In addition to our Comprehensive configuration report and our Devices and ports reports, for a site or factory acceptance test, an audit or during troubleshooting with the help of our unique software tool* and a special script, we can generate this last Microsoft Excel® document.

[box type=”tick”]This last report highlights, for every ports, which network partner is connected to it.  This report is a tabular representation of the result of the Auto Topology used in industrial Hivision®.

Moreover, in a Gigabit network – without competing a complete reflectometry – it provides status’s summary of all optical links in your network. The transmitted / received power and the corresponding attenuation is reported with a color status (green to red) for each links. The attenuations are calculated in dBm and mW (whatever the firmware version of the switch) and can even tell you if a conflict exist on the end to end SFP’s types (eg. when using a LX SFP on one end and a LH SFP on the other end).

It is a perfect tool to pinpoint the faulty optical links you have to clean or change after a real reflectometry (we can help you on that purpose too).

A great improvement: there is now a control between transmitted and received power against the intrinsic values ​​of each SFP used. This is a good way to proactively control the aging of the SFPs and if the other side transmission is too low to be detected.

Latest addition: this report provides a comprehensive Ethernet addresses map on your entire network (associated with IP). You can now easily find on which port of which switch a specific device is connected (if you don’t have a reliable documentation).

[/box]

These last report as always using Microsoft Excel format includes the following elements:

[tab_container initial_open=”1″]

[tab title=”‘LLDP tab”]

bandeau-LldpSfpReport-1

  • IP of A device, A Port and A device name if the partner B is answering using LLDP
  • IP of B device, B Port and B device name
  • In the case of an optical link,
    • A to B and B to A attenuation in mW,
    • A to B and B to A attenuation in dBm with a background color depending the attenuation value: green is good, yellow = warning, red = high attenuation
      In the latter case, you should check the type of SFP (LH and LH+ have a larger optical budget and color can be red but with a still acceptable attenuation for this type of SFP)
    • Conformity control of both SFPs: OK or error in red background if the two do not match  (eg. LX SFP with LH SFP)

[/tab]

[tab title=”‘SFP tab”]

bandeau-LldpSfpReport-2

  • IP, Port and device name
  • SFP’s type
  • Serial#
  • Support: Is the SFP supported by the device ( Yes or Not supported) ?
  • Inside temperature of the SFP (usually 10 to 15° more than the inside temp of the device)
    • Transmission in mW and dBm
    • Reception in mW and dBm
    • Optical link status as reported by the SFP : OK or Error 
  • NEW: Control of SFP’s aging and too high attenuation on the SFP side
    • SFP status checkWarning in case the transmitted power is lower than the usual one of this type of SFP (FALSE in red if Ptx<Pavg)
    • Warning in case the transmitted power is lower than the minimum of this type of SFP (FALSE if Ptx<Pmin)
    • Calculation of deviation between the real transmitted power and the average power of the SFP
    • Warning in case the received power is lower than the lowest acceptable threshold of this type of SFP (FALSE if Prx<Pmin)

[/tab]

[tab title=”‘Addresses‘ tab”]

  • Cartographie des adresses dans le réseauMAC address (taken from FDB – Forwarding Database – table & LLDP – Link Layer Discovery – table)
  • IP address  (if a match is found in the ARP table)
  • Ports list where this mac address is seen amongst the switches (IP of the switch in the first row).
    • If the port background is green, the device with this mac is 99% connected to this port of this switch (info given by the FDB table)
    • If the port background is yellow, the information is given by the LLDP table and the port is quite certainly the one where the device is connected
    • If the port background is grey, this port is known as a backbone port in the LLDP table (so connected to another switch)
    • If the port background has no colour, the report tool is not able to give a status for this mac on this switch. The address is seen on the port, it is not a known backbone port but many addresses are connected to it (may be the device is behind a non manageable switch or behind a switch which is not part of the analysed ones).
  • The learning mode of this device: F (FDB : Forwarding Database of the switch) / L (LLDP table of the switch) / A (ARP table)
  • In the proposed sample,
    • The device with the mac 00:15:99:47:59:c2 (IP 192.196.6.111) is located most probably on port 1/7 of the switch 192.168.6.240 (last column) as there are only one address learned on that port on the forwarding database of the switch and it is not a known backbone port.
    • The port 1/2 of the switch 192.168.6.240 is a backbone port (many addresses learned on that port et reported as backbone port on the LLDP table).
    • The device with the mac 00:0e:58:8b:2d:ce (IP 192.196.6.163) is most probably located on port 1/8 of the switch 192.168.6.240 as it is reported as such by the LLDP table of this switch. There may be many addresses on this port (in case they are connected to a unmanageable switch or a switch not included in the analysis)
    • The device with mac ec:e5:55:3f:14:ee has the IP 192.168.6.235 (at the right to this MAC) and it is the internal address of a Hirschmann switch (port is —-) with IP192.168.6.235 (first line of the raw).

[/tab]

[/tab_container]

To generate this report, we have to be on your site to collect the necessary items (not provided by the usual Hirschmann™ tools).

* This tool is internally developed and enhanced based on configurations on which we operate. It is now running in the 3rd major release and it should integrate in a short time a better compatibility with the new MSP and RSP products line.